Tagué: mox Activer/désactiver les fils de commentaires | Raccourcis clavier

  • Bernard Jean 10 h 42 mi le 21 March 2011 Permalien | Réponse
    Tags : , mox,   

    Japon 


    9 heures. De la fumée s’échappe du réacteur 3 de la centrale nucléaire endommagée de Fukushima. Tout le personnel présent est évacué. Il pleut au Nord-est du Japon. Les vents poussent les émanations radioactives de la centrale accidentée vers Tokyo.

    Ne pas oublier que le réacteur 3 est chargé avec du combustible MOX :

    https://oser.wordpress.com/2011/03/17/alerte-plutonium-fukushima-3-mox-et-intox/

    Les médias parlent très peu de ce combustible fabriqué par la France. Le site nucléaire de Fukushima a été chargé pour la première fois en combustible MOX par AREVA en août 2010. Un réacteur qui n’est pas prévu au départ pour ce type de combustible, dans une centrale qui a 40 ans et dont les circuits de refroidissement n’étaient pas en bons états depuis des années.

    Le réacteur laisse échapper du plutonium, qui est très dangereux, même à très faibles doses. Le MOX est utilisé dans plusieurs centrales en France.

    Le MOX est beaucoup plus difficile à refroidir. Nous n’avons pas depuis 8 jours des informations exactes de ce qui se passe vraiment. Comme il y a plus de 200 projets pour construire de nouvelles centrales nucléaires dans le monde, les conséquences sur ce marché énorme bloquent la vérité.

    TRANSPORT DE COMBUSTIBLE MOX D’EUROPE VERS LE JAPON

    Sur le site d’AREVA

    http://www.areva.com/FR/activites-1391/transport-de-combustible-mox-d-europe-vers-le-japon-les-enjeux.html

    Navire de transport de combustible MOX : le Pacific Heron

    Les transports de combustible MOX d’Europe vers le Japon constituent une étape décisive dans la mise en œuvre du programme électronucléaire japonais. Ils s’inscrivent, en effet, dans la logique de plus de 170 transports de combustibles usés réalisés entre le Japon et l’Europe et des retours de résidus vitrifiés déjà effectués vers le Japon. D’autres opérations similaires seront organisées à intervalles réguliers dans les prochaines années (environ 1 transport par an).

    LE CONTEXTE

    Le Japon a depuis longtemps opté en faveur de l’électronucléaire. La politique de recyclage, retenue par ce pays, participe à ce choix. Le Japon a signé des contrats commerciaux avec AREVA NC en France et la Nuclear Decommissioning Authority (NDA) au Royaume-Uni pour le traitement de ses combustibles usés. Le plutonium, récupéré lors de ce traitement, est, en raison de ses importantes qualités énergétiques, réutilisé sous forme de combustible MOX.

    Ce combustible est fabriqué en Europe dans des usines dédiées, exploitées par AREVA ou la Nuclear Decommissioning Authority (NDA). En février 1997, le gouvernement japonais, s’est prononcé en faveur de l’utilisation du combustible MOX dans ses réacteurs commerciaux.

    Faisant suite à cet engagement, les compagnies japonaises d’électricité ont présenté le programme de chargement en MOX des réacteurs japonais. Ce plan prévoit que 16 à 18 réacteurs fonctionneront avec du MOX.

    LE DÉROULEMENT DES OPÉRATIONS

    • Le combustible MOX, fabriqué en Europe et destiné aux compagnies japonaises d’électricité est chargé dans des emballages de transport spécifiques.
    • Ces emballages sont acheminés vers le Japon par voie maritime à bord de navires spécialisés du même type que ceux déjà utilisés pour les transports de combustibles usés et de résidus vitrifiés.
    • Arrivés au Japon, les emballages de transport sont acheminés vers les centrales nucléaires où sera chargé le combustible MOX.

    LES ASPECTS TECHNIQUES

    Le combustible MOX, combustible nucléaire classique, est constitué d’un mélange d’uranium et de plutonium. La teneur en plutonium varie de 5 à 10 % selon le type de combustible. Depuis les années 60, le MOX est utilisé dans plusieurs pays avec des performances tangibles en termes de rendement énergétique et de sécurité. On compte aujourd’hui 35 réacteurs chargés avec du combustible MOX en Europe.

    La première étape du procédé de fabrication du combustible MOX consiste à mélanger de façon homogène des poudres d’uranium et de plutonium. Ce mélange est alors pressé sous forme de pastilles cylindriques qui sont ensuite durcies par cuisson (frittage) à haute température (environ 1700°C) à l’instar du processus de fabrication de la céramique. Les pastilles, ainsi semblables à de la pierre, sont insérées dans des tubes appelés crayons présentant de réelles capacités de résistance à la corrosion. Les crayons sont alors placés dans des structures métalliques pour former des assemblages combustibles MOX.

    Ces derniers sont transportés dans des emballages spécifiques adaptés au transport maritime, agréés par les Autorités britanniques, françaises et japonaises. L’emballage TN 12/2, conçu pour assurer la sûreté du transport, pèse près de 100 tonnes, mesure près de 6 mètres de long et plus de 2 mètres de diamètre et peut contenir jusqu’à douze assemblages. Les emballages de transport de combustibles MOX sont similaires dans leur conception à ceux utilisés pour transporter du combustible usé et des résidus vitrifiés. Les transports maritimes de combustible MOX s’effectuent à bord de navires spécialement conçus pour le transport de matières nucléaires.

    Les emballages, les navires ainsi que l’organisation logistique de ces opérations obéissent aux exigences les plus rigoureuses des réglementations internationales et nationales applicables, et en particulier celles relatives à la sûreté des transports (recommandations de l’Agence Internationale de l’Energie Atomique et réglementations de l’Organisation Maritime Internationale).

    LA PROTECTION PHYSIQUE

    En raison de sa nature (présence significative de matières fissiles), le combustible MOX rentre dans la catégorie des matières nucléaires requérant des mesures de protection physique particulièrement rigoureuses. L’organisation du transport de combustible MOX d’Europe vers le Japon intègre des dispositifs de protection physique conséquents destinés à assurer que les navires et leur cargaison sont protégés contre les risques de vols ou de sabotage.

    Deux navires armés conçus exclusivement pour ce type de transport, naviguant de conserve, sont utilisés pour le transport du combustible MOX d’Europe vers le Japon. Ils sont équipés de moyens spécifiques de protection et de défense ainsi que d’un système de suivi, de contrôle et de communication sécurisés, multiple et fiable, répondant aux accords internationaux et gouvernementaux qui encadrent ces transports. Une escorte armée assure la sécurité à bord du navire pendant tout le transport.

    Certaines de ces dispositions vont parfois au-delà des exigences réglementaires

    Ces navires sont également protégés par des forces spécialement entraînées appartenant à la « British Civil Nuclear Constabulary » ou « Police de l’Autorité Nucléaire du Royaume-Uni ».

    L’ensemble de ces mesures de protection physique est conforme, voire dépasse, les directives établies par l’Agence Internationale de l’Énergie Atomique pour le transport des matières fissiles et les exigences de l’Accord Etats-Unis-Japon de 1988 sur la Coopération pour l’Utilisation Pacifique de l’Energie Nucléaire.

    Le dispositif de protection physique mis en place a été soumis à l’aval du gouvernement américain (agences gouvernementales en charge de la défense, des affaires étrangères, de la marine et du renseignement). Le gouvernement américain a officiellement approuvé le dispositif de protection physique mis en place et l’a notifié aux Autorités japonaises.

    POURQUOI DU COMBUSTIBLE MOX EST-IL TRANSPORTÉ DE L’EUROPE VERS LE JAPON ?

    Quartier Shibuya à Tokyo

    Le Japon, dépourvu de ressources naturelles, a de très importants besoins énergétiques. Ce pays s’est donc engagé dans un vaste programme de développement à long terme d’une industrie électronucléaire.

    Cette stratégie inclut la fermeture du cycle du combustible. Ce choix assure une gestion cohérente des combustibles usés et des déchets nucléaires par le traitement des combustibles usés, le conditionnement des déchets ultimes et le recyclage des matières fissiles valorisables : l’uranium et le plutonium.

    Dans le cadre de cette stratégie, les compagnies électriques japonaises ont signé des contrats de traitement et de recyclage de leurs combustibles usés avec AREVA en France et la NDA au Royaume-Uni. D’autres pays ont fait le choix du traitement-recyclage : l’Allemagne, la Belgique, les Pays-Bas, la Suisse et l’Italie.

    Le plutonium, récupéré lors du traitement, est prêt à être réutilisé dans des réacteurs sous la forme de combustible MOX. L’utilisation du MOX offre de nombreux avantages :

    il préserve les ressources naturellles en uranium existantes et sécurise la fourniture d’énergie

    il réduit l’impact sur la santé et l’environnement : il permet enfin de réduire le volume et la radiotoxicité des déchets ultimes de haute activité destinés au stockage définitif.

    il contribue à la non-prolifération en,réduisant l’inventaire de plutonium.

    Les usines de fabrication de combustibles MOX en France et au Royaume-Uni, ainsi que les installations au Japon sont contrôlées par les Autorités nationales et internationales dont EURATOM et l’AIEA.

    Au début de l’année 1997, le gouvernement japonais s’est prononcé en faveur de l’utilisation à court terme du combustible MOX dans les réacteurs japonais. Les compagnies japonaises d’électricité ont alors annoncé que 16 à 18 réacteurs seraient « moxés »  Ce combustible MOX destiné au Japon est fabriqué dans des usines situées en Europe. Le combustible MOX est utilisé et fabriqué en Europe depuis plus de 40 ans.

    Les Autorités britanniques, françaises, et japonaises se sont officiellement prononcées en faveur du transport de MOX d’Europe vers le Japon. Les Etats-Unis, après un examen minutieux du plan de transport proposé, ont également donné leur accord pour ce transport, notamment sur ses aspects de protection physique. Les Etats-Unis détiennent en effet un droit d’accord préalable à chaque transport pour le transfert du plutonium japonais d’Europe vers le Japon, au titre des Accords Etats-Unis-Euratom et Etats-Unis-Japon (1988) sur la Coopération pour l’Utilisation Pacifique de l’Energie Nucléaire. L’accord américain est exprimé par une « Lettre de Coopération » signée par les plus hautes autorités de ce pays.

     
  • Bernard Jean 12 h 28 mi le 17 March 2011 Permalien | Réponse
    Tags : , mox, , plutonium,   

    Alerte Plutonium Fukushima 3 : MOX et INTOX 


    Origine de l’article >>> ICI

    NEXT-UP ORGANISATION 16 03 2011

    La Tokyo Electric Power Co (TEPCO) est la compagnie d’électricité japonaise qui exploite les sites des centrales nucléaires de Fukushima Daiichi où se sont produites les explosions et le site de Fukushima Daini distant d’une douzaine de kilomètres, l’ensemble totalisant dix réacteurs qui alimentent en électricité Tokyo et sa région.

    Ces réacteurs sont à eau bouillante, celle-ci chauffée par la fission des atomes du combustible qui se transforme en vapeur est dirigée directement par un circuit primaire radioactif vers un générateur d’électricité. Cette configuration est totalement différente des Réacteurs dits à Eau Pressurisée (REP) exploités en France qui comportent un circuit secondaire non radioactif avec un échangeur qui alimente la turbine du générateur.

    Face à la succession d’évènements catastrophiques d’ordre naturel qui se sont produits au Japon suite aux tremblements de terre et au-delà des drames humain il est fondamental d’aller à l’essentiel, c’est à dire à ce qui pourrait hypothéquer durablement le devenir du vivant sur une zone plus ou moins vaste, voire à l’échelle du Japon et des pays satellites ou pire, un scénario de catastrophe environnementale planétaire jamais égalé.

    Malheureusement dans le cas du site nucléaire de Fukushima, la « hiérarchie catastrophe » peut atteindre un paroxysme avec le réacteur 3 de 34 ans d’âge qui a été chargé pour la première fois en combustible MOX fourni par AREVA en août 2010.

    Dans le quotidien JAPAN TO DAY du dimanche 22 août 2010

    Il était écrit en titre : « La compagnie électrique de Tokyo a chargé en combustible MOX le vieux réacteur de Fukushima » « Tokyo Electric Power Co loaded plutonium-uranium mixed oxide fuel Saturday into a reactor at its nuclear power plant in Fukushima Prefecture in preparation for the largest Japanese utility’s first plutonium-thermal power generation. The No. 3 reactor at the Fukushima No. 1 plant would be the third in Japan to be used for the so-called Pluthermal generation, but the only one among the three to have been subjected to antiaging treatment with 34 years since its launch » « La Tokyo Electric Power Co (TEPCO) a chargé du combustible oxyde mixte de plutonium-uranium (MOX) ce samedi dans un réacteur de sa centrale nucléaire de la région de Fukushima en vue de la plus grande production d’électricité de réaction nucléaire réalisée au plutonium au Japon. « 

    Le réacteur du numéro 3 de la centrale N°1 de Fukushima sera le troisième au Japon à passer à la génération dite Pluthermal (Plutonium-Thermique), mais le seul parmi les trois à avoir été soumis à un traitement anti- vieillissement depuis son activation, car il est âgé de 34 ans »

    Sous l’article deux commentaires explicites : « . . . l’incompétence au Japon est élevée au niveau maximum, de cette façon elle fait courir un grand danger pour l’humanité » . Le deuxième commentaire était prémonitoire : « Maybe they forgot to tell everyone how they’ve determined there will never be any more earthquakes. Idiots are indeed correct. Likely long-term pain for short term gain »

    « Peut être qu’ils devraient dire comment ils ont déterminé qu’il n’y aurait jamais de tremblement de terre. Dire que se sont des idiots est juste. Il y aura probablement des douleurs sur le long terme pour des gains sur le court terme »

    Dans un autre article du JAPAN TO DAY daté du 18 septembre 2010

    Ayant pour titre : « La production d’électricité Pluthermal (Plutonium-Thermique) commence à la centrale de Fukushima 1 » « Lors de l’activation la compagnie a indiqué qu’elle a eu des difficultés à démarrer le réacteur n ° 3 de la centrale située à Fukushima et a reporté l’activation initialement prévue pour vendredi soir. » « The company said the alarm light indicating the conditions of the pipe valve for the emergency core cooling system did not function properly. »

    « La compagnie a déclaré que le voyant d’alarme indiquant des conditions anormales de la vanne de commande des tuyaux pour le système de refroidissement d’urgence ne fonctionnait pas correctement. »

    En mars 2011, au vu des événements cette information prend une toute autre dimension.

    FUKUSHIMA ALERTE PLUTONIUM

    Le MOX, pour « Mixed Oxydes » est un combustible hautement toxique et dangereux composé d’environ 6 à 7 % de dioxyde de plutonium récupéré en « retraitant » du combustible nucléaire usé qui est mélangé à du dioxyde d’uranium neuf appauvri. Le MOX entre plus facilement en fusion que les combustibles classiques, il est utilisé dans 20 des réacteurs du parc nucléaire français.

    Le problème majeur est que le plutonium du MOX est très toxique à court et à long terme. En voies aériennes, on estime qu’une quantité de l’ordre d’une dizaine de milligrammes provoque le décès d’une personne ayant inhalé en une seule fois des oxydes de plutonium. La relation dose-effet mise en évidence comporte un seuil d’apparition des tumeurs au poumon pour une dose millésimale, de plus une part importante inhalée passe des poumons au sang qui le diffuse vers d’autres organes (ganglions lymphatiques, foie, etc …), plus ou moins vite selon la taille des particules, pour aboutir aux cancers.

    Selon sa composition isotropique il est capable de contaminer des masses considérables d’eau de mer pour plus d’un siècle qui correspond au mieux à sa demi-durée de vie et au pire pour 240 siècles !

    Le plutonium qui est produit par le cœur des réacteurs nucléaires sous l’effet du flux de neutrons, fait non seulement partie des éléments présentant une radiotoxicité très élevée, mais tous les isotopes et autres composés issus du plutonium sont aussi classés très toxiques et radioactifs. [Wikipedia Plutonium] Ce qui rend particulièrement dangereux le plutonium est, entre autres, la forte énergie de ses émissions de particules alpha d’une valeur de 5 MeV à comparer au 0,02 MeV du tritium.

    D’après les informations de dernière minute le vieux réacteur 3 de Fukushima Dai Ichi est entré partiellement en fusion, un risque de désintégration est une hypothèse qui n’est non pas à exclure, mais dans le domaine du probable. Cela aurait pour conséquence un rejet massif dans l’environnement et dans l’atmosphère de particules hautement radiotoxiques.

    Le pire étant que le réacteur 3 avec 784 MW est 1,5 fois plus puissant que le réacteur 1 de 460 MW chargé avec de l’uranium enrichi, ce qui signifie que son chargement en combustible, donc en plutonium, est beaucoup plus conséquent, avec en parallèle une chaleur dégagée à l’arrêt nettement plus importante à gérer.

    Mais il y a pire que pire dans un des scénaris possibles avec le réacteur 3 de Fukushima : Le combustible MOX qui est un mélange à un point de fusion nettement plus bas que les autres combustibles dit classiques, en conséquence dans une configuration accidentelle comme actuellement le risque dit de criticité, c’est à dire l’enclenchement d’une réaction nucléaire en chaîne incontrôlable est beaucoup plus important.

    D’autres problèmes collatéraux aggravent encore la situation pour « les pompiers de service » qui se sacrifient pour éviter que la cuve ne fonde pas, en effet l’eau mélangée au bore qui sert à atténuer les effets d’échauffement de la radioactivité (absorbe les neutrons) est d’une efficacité moindre avec le MOX.

    Coté chiffres, ils sont effrayants, la masse de plutonium présente dans le réacteur 3 du site nucléaire de Fukushima Dai Ichi est considérable, elle se chiffre à plusieurs centaines de kilogrammes, une catastrophe planétaire inégalée créée par l’homme est donc possible pour la première fois dans l’histoire de l’humanité.

    Pendant ce temps, même en zappant pas moyen d’y échapper, sur les plateaux de télévision un tandem composé d’un monsieur qui « sait tout » appelé Eric Besson, accompagné par l’inoxydable NKM qui ne sait rien, mais qui parle beaucoup pour ne rien dire, n’évoquent évidemment pas le MOX, mais sont les rois de l’INTOX.

    Avec le MOX Français d’AREVA au Japon mieux vaut actuellement adopter un profil bas !

    Ce tandem irréel veut rassurer et ressasse à qui veut l’entendre que ce n’est pas la partie nucléaire qui a failli sur les réacteurs de la centrale de Fukushima Dai Ichi, mais les tuyaux, c’est-à-dire les systèmes de refroidissement et de secours inclus à cause du tsunami, cela est hautement inenvisageable en France, etc …

    Certaines problématiques des risques issues des catastrophes naturelles majeures sont par essence ingérables, en conséquence gérer une centrale atomique avec un risque zéro est donc impossible : Ce postulat et actualité obligent, les personnes en charge de responsabilités devraient en tirer les conclusions qui s’imposent.

    Andréas Heumann, chercheur au CNRS a déclaré : « Le problème avec le nucléaire, c’est que cette technologie n’est pas maîtrisable, on peut arriver à garder le contrôle dans des conditions normales. Mais il y a tellement de situations anormales qui peuvent survenir ».

    http://www.next-up.org/Newsoftheworld/2011.php

    http://www.next-up.org/Newsoftheworld/Japan.php

    Le combustible MOX

    http://fr.wikipedia.org/wiki/Combustible_MOX

    Le combustible MOX est un combustible nucléaire fabriqué à partir de plutonium et d’uranium appauvri. Le terme MOX est l’abréviation de : « Mélange d’OXydes ». Le combustible MOX contient du dioxyde d’uranium (UO2) et du dioxyde de plutonium (PuO2).

    Le combustible MOX est fabriqué à partir du plutonium créé par capture neutronique de l’uranium 238 dans les réacteurs nucléaires et isolé lors du processus de traitement des combustibles irradiés. Ce plutonium est mélangé avec de l’uranium appauvri issu de l’étape d’enrichissement du combustible.

    Histoire

    Le MOX est apparu vers les années 1960 dans les centres de recherche (la première irradiation connue est celle du réacteur BR3 de Mol (Belgique) en 1964) et fut même testé par les États-Unis qui le rejetèrent le considérant dangereux et peu rentable.

    Dans les années 1980, le gouvernement français met en place un programme de combustible nucléaire utilisant le plutonium. EDF signa alors un accord avec la COGEMA pour utiliser du combustible MOX dans certains de ses réacteurs nucléaires, sous la condition que cela soit économiquement intéressant. Pourtant, en 1989, EDF a calculé que l’utilisation du MOX ne serait pas économiquement intéressante. Les coûts additionnels sur 10 ans de l’utilisation du combustible MOX à la place de l’uranium étaient estimés à 2,3 milliards de francs, soit environ 350 millions d’euros. Mais puisque le contrat de traitement était déjà signé avec la COGEMA, EDF décida de poursuivre le programme MOX afin de maintenir l’option de traitement ouverte pour les prochaines générations de réacteurs nucléaires.

    L’explication du député français Bataille sur l’origine de l’utilisation du MOX en France est la suivante : « l’échec […] de la filière des surgénérateurs posait le problème de la pertinence du traitement. Pourquoi, en effet, continuer des opérations compliquées et coûteuses s’il n’existe plus de débouché pour les produits issus du recyclage ? Face à cette situation, la France, qui disposait avec les installations de l’usine de retraitement de la Hague d’importantes capacités de traitement, a décidé de se tourner vers une solution alternative : la fabrication du combustible MOX, qui est un mélange de 6 à 7 % de plutonium avec 93 % d’uranium appauvri. »

    Production

    Le plutonium est un résidu de la fission de l’uranium: l’uranium 238 qui constitue la majeure partie du combutible initial capture des neutrons issus de la fission de l’uranium 235 et forme notamment du plutonium 239 fissible1. Or la fission du plutonium est une des principales source de chaleur dans les réactions de fission1. Lorsque le combustible arrive en fin de vie (le pourcentage d’uranium 235 étant inférieur à 1% du contenu total), environ 1% de plutonium est disponible1. Par séparation chimique, le plutonium est récupéré puis transformé en dioxyde de plutonium avant d’être mélangé avec du dioxyde d’uranium selon le procédé MIMAS2 pour forme le MOX1. L’intérêt du MOX est la possibilité d’utiliser de l’uranium naturel voire de l’uranium appauvri en place du traditionnel uranium enrichi. L’uranium appauvri étant un déchet de la production de l’uranium enrichi ou le résidu des barres de combustible usagé, il est possible de fabriquer du nouveau combustible nucléaire sans nouvel appport en uranium naturel, donc uniquement à partir de déchets de l’industrie nucléaire.

    Le Mox contient entre 7-8% de plutonium dont 4-5% fissible1 et permet du coup une diminution de la quantité de plutonium à traiter en tant que déchet. Certaines centrales ont été conçu pour fonctionner avec 100% de MOX et ainsi ne dépendent de l’extraction de l’uranium.

    Utilisation en France

    Actuellement, l’usine Mélox du site nucléaire de Marcoule dans le Gard produit 140 tonnes de MOX par an.

    Sur l’ensemble du parc français, EDF utilise le mélange MOX depuis les années 1990 pour 203 réacteurs nucléaires à eau pressurisée (REP ou PWR en anglais) d’une puissance de 900 MW. Il s’agit de :

    Utilisation au Japon

    Une dizaine de compagnies électriques japonaises gérant des centrales atomiques ont des projets d’utilisation de MOX, à partir de mars 2011 pour la plupart. La compagnie française Areva a signé plusieurs contrats en 2006 puis 2008 avec quatre de ces sociétés pour la fabrication du MOX4.

    Depuis décembre 2010, Kyushu Electric Power Company a introduit du combustible MOX dans la 3e tranche de la centrale nucléaire de Genkai5.

    Depuis février 2011, l’exploitant japonais TEPCO utilise du combustible MOX dans le 3e réacteur de la Centrale nucléaire de Fukushima Daiichi.

    Deux autres réacteurs utilisent actuellement du MOX au Japon.6

     
c
créer un nouvel article
j
message/commentaire suivant
k
message/commentaire précédent
r
Réponse
e
Modifier
o
afficher/masquer les commentaires
t
remonter
l
connexion
h
afficher/masquer l'aide
shift + esc
Annuler
%d blogueurs aiment cette page :